Mass spectrometry-based detection of transfer RNAs by their signature endonuclease digestion products.
نویسندگان
چکیده
The separation of biologically active, pure, and specific tRNAs is difficult due to the overall similarity in secondary and tertiary structures of different tRNAs. Because prior methods do not facilitate high-resolution separations of the extremely complex mixture represented by a cellular tRNA population, global studies of tRNA identity and/or abundance are difficult. We have discovered that the enzymatic digestion of an individual tRNA by a ribonuclease (e.g., RNase T1) will generate digestion products unique to that particular tRNA, and we show that a comparison of an organism's complete complement of tRNA RNase digestion products yields a set of unique or "signature" digestion product(s) that ultimately enable the detection of individual tRNAs from a total tRNA pool. Detection is facilitated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and proof-of-principle is demonstrated on the whole tRNA pool from Escherichia coli. This method will enable the individual identification of tRNA isoacceptors without requiring specific affinity purification or extensive chromatographic and/or electrophoretic purification. Further, experimental identifications of tRNAs or other RNAs will now be possible using this signature digestion product approach in a manner similar to peptide mass fingerprinting used in proteomics, allowing RNomic studies of RNA at the post-transcriptional level.
منابع مشابه
Relative quantitation of transfer RNAs using liquid chromatography mass spectrometry and signature digestion products
Transfer ribonucleic acids (tRNAs) are challenging to identify and quantify from unseparated mixtures. Our lab previously developed the signature digestion approach for identifying tRNAs without specific separation. Here we describe the combination of relative quantification via enzyme-mediated isotope labeling with this signature digestion approach for the relative quantification of tRNAs. The...
متن کاملEnhanced Detection of Post-Transcriptional Modifications Using a Mass-Exclusion List Strategy for RNA Modification Mapping by LC-MS/MS
There has been a renewed appreciation for the dynamic nature of ribonucleic acid (RNA) modifications and for the impact of modified RNAs on organism health resulting in an increased emphasis on developing analytical methods capable of detecting modifications within specific RNA sequence contexts. Here we demonstrate that a DNA-based exclusion list enhances data dependent liquid chromatography t...
متن کاملDetermination of methylation specificity of sequence-specific DNA methyltransferases using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.
We describe here a sensitive and straightforward method for characterizing the methylation specificity of type II DNA methyltransferase (MTase) using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. DNA substrate, prepared by ligation of a commercially available oligonucleotide, was modified by the subject MTase, and was derivatized to a mixture of singl...
متن کاملIdentification of RNA molecules by specific enzyme digestion and mass spectrometry: software for and implementation of RNA mass mapping
The idea of identifying or characterizing an RNA molecule based on a mass spectrum of specifically generated RNA fragments has been used in various forms for well over a decade. We have developed software-named RRM for 'RNA mass mapping'-which can search whole prokaryotic genomes or RNA FASTA sequence databases to identify the origin of a given RNA based on a mass spectrum of RNA fragments. As ...
متن کاملDetection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia.
A codon-optimized recombinant ribonuclease, MC1 is characterized for its uridine-specific cleavage ability to map nucleoside modifications in RNA. The published MC1 amino acid sequence, as noted in a previous study, was used as a template to construct a synthetic gene with a natural codon bias favoring expression in Escherichia coli. Following optimization of various expression conditions, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2007